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Abstract. We study the solutions of a family of discrete Painlevé equations. The equations that
we examine are given as a system of two first-order non-autonomous mappings. The solutions
we are interested in are the ones obtained whenever the Painlevé equation can be reduced to
a discrete Riccati equation, which can be linearized through a Cole–Hopf transformation. The
special solutions thus obtained involve generalizations or reductions of the hypergeometric (and
q-hypergeometric) function.

1. Introduction

One of the special properties of the Painlevé equations is the fact that they possess solutions in
terms of special functions [1]. These solutions do not represent the full general solution of these
ordinary differential equations, which, as is well known, introduces new transcendents [2]. In
fact they correspond to a one-degree-of-freedom solution for a particular set of parameters.
Let us give an example here. Consider the PII equation

w′′ = 2w3 + zw +µ. (1.1)

Wheneverµ is of the formµ = 1
2 +m with m ∈ Z, a subset of solutions of (1.1) can be

expressed in terms of Airy functions. In particular forµ = 1
2 we havew = −qA′(qz)/A(qz)

whereA satisfies the Airy equationA′′(u) = uA(u) andq = −1/ 3
√

2. For higher values of
µ the solution can be constructed using the Schlesinger transformations of PII and it can be
shown that it can be expressed in terms of a Wronskian determinant, the elements of which
are Airy functions (and their derivatives).

Discrete Painlev́e equations [3] have the same properties as their continuous counterparts.
Let us illustrate this by the discrete analogue of the example we presented above. We start
with the discrete PII equation:

x + x = zx +µ

1− x2
(1.2)

wherez ≡ z(n) = αn + β, x ≡ x(n), x = x(n + 1), x = x(n − 1). Here whenµ = α/2
the solution of (1.2) can be expressed asx = A/A − 1 whereA(n) obeys the mapping
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A− 2A + (z + α/2)A = 0. This is the discrete analogue of the Airy equation [4]. For higher
values ofµ of the formµ = ( 1

2 + m)α it can be shown that the solutions can be expressed
in terms of Casorati determinants involving discrete Airy functions. The special function
solutions of a large class of discrete Painlevé equations have already been studied in [5].

In this paper we will address the problem of the special function solutions ofasymmetric
discrete Painlev́e equations. The term ‘asymmetric’ needs some explanation. When the
QRT [6] mapping was proposed, it was presented under two forms: a one-component one
called ‘symmetric’ and a two-component one called asymmetric. We have carried over this
terminology to the discrete Painlevé equations (but we are conscious that it is not a very
appropriate one). An asymmetric discrete Painlevé equation in this paper will designate a
mapping of the form:

x = f1(y)− xf2(y)

f4(y)− xf3(y)
(1.3a)

y = g1(x)− yg2(x)

g4(x)− yg3(x)
(1.3b)

(discrete Painlev́e equations involving more than two dependent variables do exist [7], and
have been identified but they will not be the object of the present study).

The asymmetric discrete Painlevé equations we shall consider are interconnected in what
we call a coalescence cascade, which means that starting from some equation with a high
number of parameters one can obtain the ones with lower number of parameters through a
degeneration procedure. To be more specific, the equations we shall examine are arranged in
the following degeneration pattern:

αq-PV −→ αd-PIVy y
αq-PIII −→ d-PV −→ d-PIVy y

αd-PII −→ αd-PI .

The names of the equations will become explicit in the next section. Here the symbol
α stands for asymmetric. The two types of d- andq-equations distinguish the way in which
the independent variable enters. For d-equations it enters in an additive way, i.e.z = αn + β,
while for aq-equation it enters in a multiplicative way, i.e.z = z0λ

n. The above pattern does
not exhaust all the possible degenerations, as we have shown in [8], but the remaining lower
equations possess symmetric forms (and have already been studied [9]).

How does one obtain a solution in terms of special functions for a discrete Painlevé
equation? Following the analogy with the continuous Painlevé equations we seek a solution
that satisfies a discrete Riccati in one of the variables:

x = ax + b

cx + d
(1.4a)

while the two variables are related through a homographic transformation

y = f x + g

hx + j
. (1.4b)

(All the parametersa, b, c, d,f , g,h, j may, of course, depend on the independent variable
n.) Once the Riccati equation is obtained, one can linearize it through the use of a Cole–Hopf
transformation simply by puttingx = H/G. This leads to a three-point linear mapping which
is the discrete equivalent of the linear second-order equations of the hypergeometric family.
The examples that will be presented in what follows will make these notions clearer.
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2. The construction of the discrete special function solutions

As we explained in the introduction, the asymmetric discrete Painlevé equations we shall
examine are organized in a coalescence cascade where a given ‘higher’ equation leads to one
(or more) ‘lower’ ones through a limiting procedure involving the dependent and independent
variables as well as the parameters. In order to make the presentation clearer we will use the
following convention.A priori, the equations will be expressed in lower-case letters:x, y, z

etc. For the coalescence procedure involving two equations, the higher equation variables
will be written in upper-case letters:X, Y,Z, etc, and the lower equation ones in lower-case
letters. The small parameter used in the coalescence procedure will be represented byδ while,
whenever continuous limits are considered, the corresponding small parameter will beε.

2.1. The asymmetricq-PV

We start with the asymmetricq-PV equation which is the name of the system:

(yx − 1)(yx − 1) = (y − u)(y − v)(y − w)(y − s)
(1− py/z)(1− y/pz) (2.1a)

(yx − 1)(yx − 1) = (x − 1/u)(x − 1/v)(x − 1/w)(x − 1/s)

(1− rx/z̃)(1− x/rz̃) (2.1b)

with the constraintuvws = 1 and wherez = z0λ
n andz̃ = z0λ

n+1/2. For future convenience
we introduce the parameterµ = λ1/2. The linearization of (2.1) can be obtained most simply
by the splitting procedure we have introduced in [10]. Namely we split each of the equations
of the system in two parts and we request that the resulting system:

yx − 1= − (y − u)(y − v)
uv(1− py/z) (2.2a)

yx − 1= − (y − w)(y − s)
(1− y/pz)ws (2.2b)

yx − 1= −uv(x − 1/u)(x − 1/v)

(1− rx/z̃) (2.2c)

yx − 1= −ws(x − 1/w)(x − 1/s)

(1− x/rz̃) (2.2d)

be compatible. The condition for compatibility is

r = µuvp. (2.3)

This is precisely the linearizability condition. Indeed when (2.3) holds we can obtain form
(2.2) a homographic mapping forx in the form

x = xsw(puv − (u + v)z + pz2)− (p2uv − sw)z + p(u + v − s − w)z2

xz(p2 − 1) + puv(sw − pz(s +w) + z2)
. (2.4)

This discrete Riccati equation can be linearized through a Cole–Hopf transformation. The
resulting equation lies beyond the hypergeometric equation just as asymmetricq-PV goes
beyond PVI (since it has one extra parameter). However, as we have shown in [11], asymmetric
q-PV doesgo over to PVI at the continuous limit. Indeed takingu = θeεa, v = θ−1eεb,
w = θe−εa, s = θ−1e−εb, λ = eε , p = eεc, r = eεd , ω = (x − θ)/(θ−1 − θ),
ζ = (z−θ)/(θ−1−θ), y = (z(x−θ−1−θ)+1)/(x−z)+εψ , where the constraintuvws = 1
has been implemented, we obtain after eliminatingψ from two first-order equations:

d2ω

dζ 2
= 1

2

(
1

ω
+

1

ω − 1
+

1

ω − ζ
)(

dω

dζ

)
2 −

(
1

ζ
+

1

ζ − 1
+

1

ω − ζ
)

dω

dζ



4556 T Tamizhmani et al

+
ω(ω − 1)(ω − ζ )

2ζ 2(ζ − 1)2

(
A +

Bζ

ω2
+
C(ζ − 1)

(ω − 1)2
+
Dζ(ζ − 1)

(ω − ζ )2
)

(2.5)

i.e. precisely PVI whereA = 4c2, B = −4b2, C = 4a2 andD = 1− 4d2.
The same continuous limit on the discrete Riccati (2.4), leads to the continuous Riccati:

ζ(1− ζ )dω
dζ
= 2dω2 + (2(a + b)ζ − 2a − 2c)ω − 2bζ (2.6)

where the linearization condition is nowd = a + b + c + 1
2, and the Cole–Hopf transformation

ω = ζ − ζ(1−ζ )
2cG

dG
dζ

linearizes it to

ζ(1− ζ )d
2G

dζ 2
+ (2a + 2c + 1− (2c + 2d + 1)ζ )

dG

dζ
− 4cdG = 0 (2.7)

i.e. the Gauss-hypergeometric equation in canonical form.
The coalescence procedure applied to asymmetricq-PV allows one to obtain either

asymmetric d-PV or asymmetricq-PIII . Let us study the first limit.

2.2. The asymmetricd-PIV

In order to obtain asymmetric d-PIV starting from asymmetricq-PV we introduce the following
transformation:X = 1 + δx, Y = 1 + δy, Z = 1 + δz, λ = 1 + δα, U = 1 + δu, V = 1 + δv,
W = 1 +δw, S = 1 +δs, P = 1 +δp,R = 1 +δr where nowz = αn +β. At the limit δ→ 0
we obtain the system:

(y + x)(y + x) = (y − u)(y − v)(y − w)(y − s)
(y + p − z)(y − p − z) (2.8a)

(y + x)(y + x) = (x + u)(x + v)(x +w)(x + s)

(x + r − z̃)(x − r − z̃) (2.8b)

with the constraintu + v + w + s = 0 and wherẽz = z + α/2. Instead of performing the
linearization splitting from the start, we use the coalescence limit on asymmetricq-PV. We
find thus the system:

y + x = (y − u)(y − v)
(y + p − z) (2.9a)

y + x = (y − w)(y − s)
(y − p − z) (2.9b)

y + x = (x + u)(x + v)

(x + r − z̃) (2.9c)

y + x = (x +w)(x + s)

(x − r − z̃) (2.9d)

and the compatibility–linearizability condition reads

r = u + v + p + α/2. (2.10)

The discrete Riccati reads

x = x((z + p)(z− p − u− v) + uv) + (z− p − u− v)(sw − uv)− 2puv

2px + (z− p)(z + p + u + v) + sw
. (2.11)

Its linearization leads again to a discrete linear equation that goes, in principle, beyond the
hypergeometric. As in the case of asymmetricq-PV the continuous limit can be easily obtained.
For asymmetric d-PIV it leads to PVI [11]. We putu = 1

2 + εa, v = − 1
2 + εb, w = 1

2 − εa,
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s = − 1
2 − εb, p = εc, r = εd, x = ω− 1

2, z = ζ − 1
2, y = ω(ζ − 1)/(ω− ζ ) + 1

2 + εψ , and
after again eliminatingψ in two first-order equations we recover atε → 0 the equation (2.5)
with A = 4c2, B = −4a2, C = 4b2 andD = 1− 4d2. The same approach on the Riccati,
where the linearization condition is nowd = a + b + c + 1

2, leads to a continuous equation
linearized with the same Cole–Hopf as (2.6) to

ζ(1− ζ )d
2G

dζ 2
+ (d− a − (2c + 2d + 1)ζ )

dG

dζ
− 4cdG = 0 (2.12)

again the hypergeometric equation.

2.3. The asymmetricq-PIII

The asymmetricq-PV has another coalescence limit to the asymmetricq-PIII equation. Putting:
X = x/δ, Y = y/δ, Z = z/δ, U = u/δ, V = vδ,W = w/δ, S = sδ, P = p, R = r, we find
at δ→ 0 the mapping

xx = (y − u)(y − w)
(1− yp/z)(1− y/pz) (2.13a)

yy = (x − 1/v)(x − 1/s)

(1− xr/z̃)(1− x/rz̃) (2.13b)

with the obvious conditionuvws = 1. Equation (2.13) can be written in canonical form by
introducing a gaugey → zy, x → z̃x. We obtain thus

xx = (y − u/z)(y − w/z)
(1− yp)(1− y/p) (2.14a)

yy = (x − 1/z̃v)(x − 1/z̃s)

(1− xr)(1− x/r) . (2.14b)

Equation (2.14) was studied by Jimbo and Sakai [12] who have shown that it is aq-discrete
form of PVI . Thus, this equation is often referred to as theq-PVI equation. Its linearization was
also obtained by Jimbo and Sakai. Providedr = µuvp holds we can obtain forx the discrete
Riccati:

x = x(u− pz) + p(u− w)
xz(p2 − 1) + p(pw − z) . (2.15)

The equation can be linearized through the Cole–Hopfx = H/G leading to the equation
for G:

G + (2λpz− λu− p2w)G + λp(z− pu)(pz− w)G = 0. (2.16)

Jimbo and Sakai, who first obtained this mapping, have identified it as the equation for
theq-hypergeometric2φ1.

2.4. The discretePV

From the diagram of the introduction we can see that the asymmetric d-PIV and the asymmetric
q-PIII go to the same equation in the coalescence limit. This equation was first identified in
[8] where we have shown that it is a discrete form of PV. Let us first examine the degeneration
asymmetric d-PIV→ d-PV. We putX = k+x, Y = −k+(y+z)δ,Z = −k+zδ,U = k+r+uδ,
V = −k + vδ, W = k − r + wδ, P = pδ, R = r, S = −k + sδ and from (2.8) we obtain at
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the the limitδ→ 0 the equations

xx = (y + z− v)(y + z− s)
(y + p)(y − p) (2.17a)

y + y = − z̃ + u

x/c + 1
− z̃ +w

xc + 1
(2.17b)

where the constraintu + v +w + s = 0 still holds and we have, moreover, taken 4k2− r2 = 1,
c = 2k + r.

The linearization of d-PV can be obtained from the direct splitting of (2.17), but also from
the degeneration of the linearization of asymmetric d-PIV . The result is the system

x = −c(y + z− v)
y + p

x = −y + z− s
c(y − p)

y = − z̃ + u

x/c + 1
− p

y = − z̃ +w

xc + 1
+ p

(2.18)

under the linearization constraint

u + v + p + α/2= 0 (2.19)

(recallz = αn + β andz̃ = z + α/2 ). A discrete Riccati is easily obtained from (2.18)

x = xc2(v − p − z) + c(v − s)
2xcp + p + s − z . (2.20)

The linearization of (2.22) can be obtained through a Cole–Hopfx = H/G leading to

G + ((c2 + 1)z + (c2 − 1)p − c2v − s + α)G + c2(z− v − p)(z− s + p)G = 0. (2.21)

This equation can be transformed through a gauge tranfsormationG = 8F , with 8 =
(v + p − z)8 to

(z− v − p)F − ((c2 + 1)z + (c2 − 1)p − c2v − s + α)F + c2(z− s + p)F = 0. (2.22)

It can be easily shown that (2.22) is just one of the Gauss relations for contiguous
hypergeometric functions. In fact, equation (2.22) is satisfied byF(1 + (z − v − p)/α, (s −
v)/α; 1 + (s − v − 2p)/α; 1− 1/c2) [13].

The relation of the special function solutions of d-PV to the hypergeometric equation is
not at all astonishing. Indeed in [14] we have shown that (2.17) can be obtained from the
Schlesinger transformations of PVI . This means that the dependent variable of the discrete
equation coincides (under the proper choice) with that of the continuous equation. Thus it
makes sense to find that the special solutions of the discrete PV obey the contiguity relations
of the function that appears in the special solutions of PVI , namely the hypergeometric.

As we explained above, d-PV in the form of equation (2.17), can be obtained as a
degeneration of asymmetricq-PIII . This is in fact how it was first obtained. We shall not
go into the details. It is straightforward to check that the linearization of the d-PV equations
obtained from that of theq-PIII through the coalescence procedure gives the same result as the
one obtained above.

The discrete PV has two possible degenerations to PIV and to asymmetric PII . Let us start
with the first degeneration.
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2.5. The discretePIV

This degeneration was first obtained in [8]. Starting from d-PV, equation (2.17), we introduce
the coalescence:X = x/δ, Y = y, U = u/δ2, V = −u/δ2,W = w, S = s, P = p, C = −δ.
At the limit δ→ 0 we obtain

xx = u (y + z− s)
(y + p)(y − p) (2.23a)

y + y = u

x
+
z̃ +w

x − 1
(2.23b)

which was shown in [8] to go over to PIV at the continuous limit. From the linearization
equations for d-PV we obtain simply

x = u

y + p
(2.24a)

x = y + z− s
y − p (2.24b)

y + p = u

x
(2.24c)

y − p = z̃ +w

x − 1
(2.24d)

and the linearizability conditionp = s + w − α/2. The discrete Riccati equation forx now
becomes

x = u(x − 1)

2px + z− s − p . (2.25)

The linearization of this equation through a Cole–Hopf transformationx = H/G results to
the linear equation

G− (z + α + u− s − p)G + u(z + p − s)G. (2.26)

This equation is (up to a trivial gauge) the recurrence relation (with respect to the second
parameter) for the Kummer confluent hypergeometricU function [13] which is quite reasonable
since d-PIV is related to the continuous PV equation [15].

2.6. The asymmetricd-PII (discretePII ) equation

The other degeneration of d-PV is towards the asymmetric d-PII , which was shown in [10] to
be a discrete form of the PIII equation. Starting from d-PV, equation (2.17), we putX = 1+δx,
Y = y, Z = δz,U = −δw = −W , V = 1 +δv = −S, C = −1− δ, P = 1, and we obtain at
δ→ 0

x + x = z + s

y − 1
+
z− s
y + 1

= 2zy + 2s

y2 − 1
(2.27a)

y + y = z̃− w
x − 1

+
z̃ +w

x + 1
= 2z̃x − 2w

x2 − 1
. (2.27b)

The linearization can be obtained from the one of d-PV or by direct splitting of (2.29) to

x − 1= z + s

y − 1
(2.28a)

x + 1= z− s
y + 1

(2.28b)

y − 1= z̃− w
x − 1

(2.28c)
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y + 1= z̃ +w

x + 1
. (2.28d)

The linearizability/compatibility condition readss + w = α/2 and leads to the discrete
Riccati

x = (2− z− s)x + 2− 2z

2x + 2− z + s
. (2.29)

The linearization is again obtained throughx = H/G and results in

G + (2z + α − 4)G + (z2 − s2)G = 0. (2.30)

This equation is, just like (2.26), a recurrence relation of the KummerU function [13]
(with respect to its first parameter, and up to a simple gauge transformation). As a matter
of fact the asymmetric d-PII (discrete PIII ) equation can also be obtained [15] from the
Schlesinger transformations of the continuous PV and is intimately related to the discrete
PIV , equation (2.23). The two equations share the same ‘Grand Scheme’ [16].

2.7. The asymmetricd-PI equation

This equation was studied in great detail in [17] where we have shown its relation to the
continuous PIV . This asymmetric equation is just another form of d-PII . In the coalescence
cascade we presented in the introduction it can be obtained as a degeneration of both d-PIV

and asymmetric d-PII . Let us show how the first limit can be obtained. We start from (2.23)
and put:X = 1 + δx/2, Y = 1 + δy, S = 1 + δ2s/2,W = δ2w/2,P = 1,Z = δ2z/2. At the
limit δ→ 0 we find

x + x = −y + u +
z− s
y

(2.31a)

y + y = −x + u +
z̃ +w

x
. (2.31b)

The linearization splitting is

x = −y + u (2.32a)

x = z− s
y

(2.32b)

y = −x + u (2.32c)

y = z̃ +w

x
(2.32d)

and the condition readss +w = α/2. Using (2.32) we can obtain a discrete Riccati forx:

x = u +
s − z
x

(2.33)

which linearizes, throughx = H/G, to

G− uG + (z− s)G = 0 (2.34)

i.e. a discrete analogue of the Airy equation which is nothing but a recurrence relation of the
parabolic cylinder equation, a fact that is expected, given the relation of asymmetric d-PI to
PIV .

The asymmetric d-PI equation can be also obtained from the asymmetric d-PII through
a coalescence limit. This procedure is essentially the same as the one introduced in [3, 8]
for the degeneration of thesymmetricd-PII to d-PI . The linear equation resulting from this
coalescence is, of course, the same discrete Airy as in equation (2.34).
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3. Conclusion

In this paper we have presented the solutions of a class of asymmetric discrete Painlevé
equations for special values of parameters for which the equations can be linearized. We
have concentrated on the fundamental solutions of this type, namely the ones which can be
linearized through a simple Cole–Hopf transformation.

The solutions of the discrete Painlevé equations can then be expressed in terms of the
discrete analogue of the special functions i.e. functions belonging to the hypergeometric family
in its various disguises.

Solutions of the discrete Painlevé equations can be constructed in terms of special functions
for other values of the parameters. The condition for their existence is simply related to the
one obtained in the linearizable case. These higher solutions can be expressed in terms of
Casorati determinants. The question, as far as most equations presented here are concerned,
is open. Only for asymmetricq-PIII [18] and asymmetric d-PI [17] do we possess the Casorati
solutions, involvingq-hypergeometric and discrete Airy functions, respectively.

Constructing higher solutions is straightforward once the Schlesinger transformations for
the d-P at hand are known. Starting from the elementary linearizable solution one can construct
the higher ones step by step by iterating the Schlesinger transformations. On the other hand,
the advantage of the Casorati solutions lies in the fact that they give a global expression which
does not require successive iterations.

Another type of solution that we have not considered at all are the rational ones. It is
indeed easy to show that for special values of the parameters (in general different from the
ones that lead to linearization) the discrete Painlevé equations do possess rational solutions.
It is quite straightforward to obtain the elementary ones and then the higher ones through
the application of the Schlesinger transformation, but to organize them in terms of Casorati
determinants is a much more difficult task than the equivalent one for special functions. Very
few results exist to date in this direction.

In this paper we have concentrated on a particular family of asymmetric discrete Painlevé
equations, the ones related to the ‘standard’ [3] forms and their degenerations through
coalescence. It is clear that the asymmetric forms examined here are not the only possible
ones. As a recent work of ours has shown [7], many more asymmetric d-P do exist and their
classification is far from complete. Once these asymmetric forms are established, the study
of their special solutions can be understood without difficulty using the method we developed
here.
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